Application of Semi-supervised Learning to Evaluative Expression Classification

نویسندگان

  • Yasuhiro Suzuki
  • Hiroya Takamura
  • Manabu Okumura
چکیده

We propose to use semi-supervised learning methods to classify evaluative expressions, that is, tuples of subjects, their attributes, and evaluative words, that indicate either favorable or unfavorable opinions towards a specific subject. Due to its characteristics, the semisupervised method that we use can classify evaluative expressions in a corpus by their polarities. This can be accomplished starting from a very small set of seed training examples and using contextual information in the sentences to which the expressions belong. Our experimental results with actual Weblog data show that this bootstrapping approach can improve the accuracy of methods for classifying favorable and unfavorable opinions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Detecting Concept Drift in Data Stream Using Semi-Supervised Classification

Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...

متن کامل

Composite Kernel Optimization in Semi-Supervised Metric

Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...

متن کامل

Active Deep Networks for Semi-Supervised Sentiment Classification

This paper presents a novel semisupervised learning algorithm called Active Deep Networks (ADN), to address the semi-supervised sentiment classification problem with active learning. First, we propose the semi-supervised learning method of ADN. ADN is constructed by Restricted Boltzmann Machines (RBM) with unsupervised learning using labeled data and abundant of unlabeled data. Then the constru...

متن کامل

Semi-supervised Learning with Sparse Autoencoders in Phone Classification

We propose the application of a semi-supervised learning method to improve the performance of acoustic modelling for automatic speech recognition based on deep neural networks. As opposed to unsupervised initialisation followed by supervised fine tuning, our method takes advantage of both unlabelled and labelled data simultaneously through minibatch stochastic gradient descent. We tested the me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006